# -*- coding: utf-8 -*- """ Created on Tue Jun 19 10:34:31 2018 @author: imdea """ import csv from collections import defaultdict import numpy as np import matplotlib.pyplot as plt from datetime import datetime, timedelta import dateutil.parser import matplotlib.dates as mdates cpu_vector = [] memory_vector = [] time_vector = [] columns = defaultdict(list) # each value in each column is appended to a list with open('monitor-cpu-memory-load.csv') as f: # obtained through glances reader = csv.DictReader(f) # read rows into a dictionary format for row in reader: # read a row as {column1: value1, column2: value2,...} for (k,v) in row.items(): # go over each column name and value columns[k].append(v) # append the value into the appropriate list # based on column name k #print(columns['now']) #print(columns['cpu.user']) #print(columns['mem.used']) #print(len(columns['now']),len(columns['mem.used'])) for j in range (len(columns['now'])): d = dateutil.parser.parse(columns['now'][j]) time_vector.append(d.strftime('%H:%M:%S')) #print(d.strftime('%H:%M:%S')) #==> '09/26/2008' for k in range (len(columns['mem.used'])): memory_vector.append(int(columns['mem.used'][k])) print(time_vector[k],int(columns['mem.used'][k]))# printing the file for the mem.used for i in range (len(columns['cpu.user'])): memory_vector.append(float(columns['cpu.user'][i])) #print(time_vector[i],float(columns['cpu.user'][i]))# printing the file for the cpu.user for l in range (len(columns['cpu.system'])): memory_vector.append(float(columns['cpu.system'][l])) #print(time_vector[l],float(columns['cpu.system'][l]))# printing the file for the cpu.system